
Using Cliques with Higher-order Spectral Embeddings Improves
Graph Visualizations

Huda Nassar∗
Stanford University

hnassar@stanford.edu

Caitlin Kennedy∗
Purdue University

caitlin.kennedy@alumni.purdue.edu

Shweta Jain
University of California, Santa Cruz

sjain12@ucsc.edu

Austin R. Benson
Cornell University
arb@cs.cornell.edu

David F. Gleich
Purdue University

dgleich@purdue.edu

ABSTRACT
In the simplest setting, graph visualization is the problem of pro-
ducing a set of two-dimensional coordinates for each node that
meaningfully shows connections and latent structure in a graph.
Among other uses, having a meaningful layout is often useful to
help interpret the results from network science tasks such as com-
munity detection and link prediction. There are several existing
graph visualization techniques in the literature that are based on
spectral methods, graph embeddings, or optimizing graph distances.
Despite the large number of methods, it is still often challenging
or extremely time consuming to produce meaningful layouts of
graphs with hundreds of thousands of vertices. Existing methods
often either fail to produce a visualization in a meaningful time
window, or produce a layout colorfully called a “hairball”, which
does not illustrate any internal structure in the graph. Here, we
show that adding higher-order information based on cliques to a
classic eigenvector based graph visualization technique enables it
to produce meaningful plots of large graphs. We further evaluate
these visualizations along a number of graph visualization metrics
and we find that it outperforms existing techniques on a metric that
uses random walks to measure the local structure. Finally, we show
many examples of how our algorithm successfully produces layouts
of large networks. Code to reproduce our results is available.

KEYWORDS
graph visualization, graph layout, spectral methods, higher-order
methods, cliques sampling

ACM Reference Format:
Huda Nassar, Caitlin Kennedy, Shweta Jain, Austin R. Benson, and David
F. Gleich. 2020. Using Cliques with Higher-order Spectral Embeddings
Improves Graph Visualizations. In Proceedings of The Web Conference 2020
(WWW ’20), April 20–24, 2020, Taipei, Taiwan. ACM, New York, NY, USA,
7 pages. https://doi.org/10.1145/3366423.3380059

∗Joint first co-authorship.

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
WWW ’20, April 20–24, 2020, Taipei, Taiwan
© 2020 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.
ACM ISBN 978-1-4503-7023-3/20/04.
https://doi.org/10.1145/3366423.3380059

1 INTRODUCTION
Graphs provide a succinct way of representing relationships among
entities. Carefully designed visualizations of these graphs can re-
veal interesting properties and patterns, and this information is
often useful in speeding knowledge discovery on graphs. Graph
visualization is specifically helpful to network analysis tasks such as
clustering and prediction [19], and there is a rich literature demon-
strating the usage and techniques of visualization in bioinformat-
ics [13, 17, 26]. The goal of graph visualizations is to make the
structure in graphs human-readable such that it will be helpful to
investigators who use visual interfaces to augment communica-
tions of their findings [17]. Ideally, a graph visualization method
aims at grouping vertices that have a common value of some latent
attribute that impacts the edges of the graph.

There have been several algorithms proposed and empirical
studies conducted for visualizing small graphs (up to a few 100
vertices), such as the well known Gephi [4], but scaling beyond
this size scale has proven to be much more challenging [17]. This is
because, as the size of the graph increases, it becomes much more
difficult to put additional data in the same space in a way that still
makes intuitive sense and is intelligible. Indeed, the term “hairball”
has been used to describe the resulting visualization because of its
nature that is complex yet lacking structure. The recent work in [10]
addresses the “hairball” phenomenon specifically, and proposes
a method to reduce a graph to a skeletal structure by removing
some of the edges and keeping only the essential relationships.
Progress has been made in visualizing graphs at size up to a million
vertices [1, 3]. These methods, however, tend to be fairly brittle and
often simply fail to give any significant structural insights for large
graphs and largely indistinguishable from a random layout.

One of the hallmarks of real world graphs is that they are not
random and the edges are concentrated in dense pockets. For ex-
ample, in social networks, groups with similar location or interests
or belonging to some organization tend to be densely connected.
This suggests that we could leverage the information of these dense
subgraphs to group vertices in such a way that densely connected
vertices are close-by in the representation. This is the starting point
of this work. Several recent advances has led to efficient mining
of these higher order structures (like cliques). We leverage the re-
cently proposed TuránShadow algorithm [15] to obtain a sample of
cliques in the graph to inform the visualization algorithm about the
existence of these correlations, and to the best of our knowledge,
none of the existing methods explicitly use this type of higher order
structures in creating the visualization. The visualizations obtained

2927

https://doi.org/10.1145/3366423.3380059
https://doi.org/10.1145/3366423.3380059

WWW ’20, April 20–24, 2020, Taipei, Taiwan H. Nassar et al.

with our method have a clear improvement over an existing tech-
nique that does not involve incorporating higher order information
about the nodes. We also outperform existing visualization tech-
niques not just in how the graphs appear but even on a numerical
metric that uses random walks to measure the local structure of a
graph. We also demonstrate the ability of our algorithm to produce
meaningful layouts of large graphs when other algorithms either
fail to produce a result in a meaningful time frame, or produce a
“hairball” type of visualization.

2 GRAPH LAYOUT ACCOUNTING FOR
(N)KNOWN CLIQUES AND EDGES
(GLANCE)

The goal of our algorithm, GLANCE, is to provide an aesthetically
interesting two dimensional layout of an undirected graphG that
can show structure and relevant clusters in the graph. The graphs
we use are unweighted, undirected, and connected.

Recent work on large scale graphs provides evidence that incor-
porating higher order connections between nodes in a graph can im-
prove standard tasks performed on graphs such as embedding, link
prediction, or other forms of semi-supervised learning [11, 24, 29].
Our graph visualization method, too, takes advantage of higher
order connections (cliques) in a graph to produce graph layouts and
we make use of the recent TuránShadow [15] procedure to obtain
random samples of cliques of varying sizes. We now briefly explain
the three components: spectral embeddings, clique weightings, and
t-SNE for more eigenvectors.
1. Spectral embeddings. LetG be an undirected graphs and letA
be the adjacency matrix. A spectral embedding ofG corresponds to
using the generalized eigenvectors associated with the normalized
Laplacian as coordinates of the graph. These can be computed from
the symmetric normalized Laplacian matrix, L = I − D−

1
2AD−

1
2 ,

whereD is a diagonal matrix withD[i, i] equal to the degree of node
i , and the matrix I is the identity matrix of matching dimensions.
If V is an n-by-k matrix of the eigenvectors associated with the
k smallest eigenvalues, then the spectral embedding is given by
the matrix X = D−1/2V . (As an aside, we note that our results are
largely equivalent with V instead of X , but we use X for consis-
tency.) The eigenvector associated with the smallest eigenvalue is
well-known to be trivially related to the degree [9], so it is usually
excluded from the embedding. To compute these eigenvectors, we
use the ARPACK method available in Matlab, Python, and Julia [20].

This eigenvector embedding can be derived by trying to find
coordinates for each node that minimize the weighted sum of edge-
lengths, where the weight is inversely proportional to the degree.
These embeddings are also called Fiedler embeddings due to the
relationship with the Fiedler vector used for graph partitioning [12].
2. Clique weightings. We want to incorporate higher order in-
formation about cliques present in the graph by forming a new
weighted version of the same graph that gives higher weights to
edges that participate in cliques. We can use the motif weighted
adjacency matrix formalism from [6] to accomplish this. In this
case, the motifs are cliques of different sizes.

Full clique enumeration is computationally costly and so we
achieve this by using the TuránShadow [15] sampling method to
create a set of randomly selected cliques for varying clique sizes.

To build the weighted adjacency matrix, we introduce the clique-
incidencematrixCk . This matrix hasn columns and each row of this
matrix is an indicator over the vertices of the cliques of size k found
by the TuránShadow method. The order of the rows is arbitrary.
Given the matrixCk , we use a modification of the weighted matrix

f (k)CTkCk .

Intuitively, the value [CTkCk]i, j indicates the number of times nodes
i and j participate together in cliques of size k (among the randomly
sampled k-cliques). Here, f (k) is a weighting function to give a
higher weight to large cliques compared to small cliques – because
large cliques are rare. In our experiments we use a simple linear
weighting function f : k → k . Because this matrix can have diago-
nal entries that give weighted self-loops, which are not particularly
interesting, we further remove any diagonal entries. So we define

W k = f (k) (CTkCk) with all diagonal terms set to 0.

Our new weighted version of the graph is created by summing over
all k between 3 (for triangles) and K the largest clique we consider.

Â = A +
K∑
k=3

W k .

From the weighted version of the graph that accounts for cliques
and edges, we then form the Laplacian matrix and find the eigen-
vectors corresponding to the second and third smallest eigenvalues.
These two vectors are then used as the coordinates of the nodes in a
two dimensional space for a clique-weighted Laplacian embedding.
3. Usingmore than two eigenvectors. Using only the two eigen-
vectors associated with the two smallest nonzero eigenvalues can
be viewed as an embedding of each node in the graph into a two
dimensional space. Often, and specially when the graph size is big-
ger, it is beneficial to use a larger embedding space of each node,
and to do so, we use a larger number of eigenvectors associated
with the smallest eigenvalues of the Laplacian matrix. We then use
the dimensionality reduction technique, t-distributed Stochastic
Neighbor Embedding (t-SNE) [22] on these eigenvectors to produce
two dimensional coordinates for each node. As evidence that using
more eigenvectors is helpful, we show a visualization of one net-
work from the Facebook 100 dataset [27] with using 10 eigenvectors
(top of Figure 1) and the two eigenvectors only (bottom of Figure 1).
The full GLANCE pipeline. Our method thus relies on account-
ing for edges, as well as higher order information in the graph
in the form of cliques, and we call it “Graph Layout Accounting
for (N)known Cliques and Edges” or GLANCE. We summarize
the final pipeline in Algorithm 1. Note that the function spectral-
embedding(W ,d) returns the d eigenvectors of the Laplacian matrix
ofW associated with the smallest d eigenvalues. And the function
tsne-reduction(X ,dims=2) applies the t-SNE algorithm. When we
draw graph layouts, we often find it useful to show regions where
nodes have been collapsed to a near point. To expand these por-
tions of the plot, we frequently plot the permutation induced by
a vector x or y. That is, we assign new coordinates based on the
rank of the node in the sorted list. This has the effect of spreading

2928

Using Cliques with Higher-order Spectral Embeddings Improves Graph Visualizations WWW ’20, April 20–24, 2020, Taipei, Taiwan

Figure 1: Visualizations of the
same graph, the Caltech36 graph
from [27]. The top figure uses an
embedding space of size 10, and
then uses a dimensionality reduc-
tion technique, t-SNE, to obtain
the two dimensional coordinates.
And the bottom figure uses the two
eigenvectors associated with the
smallest two eigenvalues of the
Laplacian matrix. Colors in this
graph refer to labeled information
about which dorm a student in
this graph belonged to, and the top
figure provides a more apparent
separation between colors.

out concentrated regions of the plot since it assigns a minimum
difference in coordinates between nodes.

Algorithm 1: GLANCE. The matrix A is the adjacency matrix of
the graph. The scalar K is maximum size clique to search for, we use K = 20.
The function f is the weighting function to impose the importance of clique
sizes, and we use a linear weighting function, f (k) = k . The scalar value d
is the number of eigenvectors corresponding to the d smallest eigenvalues
of the Laplacian matrix ofW . An implementation of our method is available
at https://github.com/nassarhuda/GLANCE.

Input: A,K , f ,d
Output: x, y
W = A
for k = 3, . . . ,K do

Ck = TuránShadow-clique-sampling(A,k)
W k = f (k)CTkCk
Set diagonal entries ofW k to 0.
W ←W +W k

X = spectral-embedding(W ,d)
x, y = tsne-reduction(X ,dims = 2)
return x, y

3 GRAPH VISUALIZATION METHODS
There is a large number of available tools for graph visualization
online and scientifically backed methods in the literature. Nonethe-
less, these methods can often be a source of frustration when used
to visualize graphs beyond a few nodes. For instance, methods,
such as Tulip [3] or Hive [18] produce radial plots that are not
relevant for understanding community structure or relations in
a graph, and are mainly developed for domain-specific biological
networks. Because we are interested in a generic algorithm here,
we use three known generic algorithms that do not require domain
specific knowledge about the nodes to compare GLANCE to. We
provide a brief summary of each of them below.
Distributed Recursive Graph Layout (DRL). This method [23]
falls under a class of graph drawing algorithms called Force-directed

algorithms [16]. These algorithms tend to be aesthetically symmet-
ric and their purpose is to have as few edge crossings as possible
and to constrain all edges to have comparable lengths.
Large Graph Layout (LGL). This algorithm [1] applies a force-
directed iterative layout guided by a minimal spanning tree of the
graph. This algorithm was originally developed for large biological
networks, and it can be particularly useful for tree-like graphs.
Node2Vec (N2V). One common way to visualize a network is via
a network embedding that allows each node to have an embedding
or vector that identifies it. What we use in GLANCE, is a form
of spectral embedding. Here, we use a popular embedding tech-
nique, Node2Vec [14], which learns the feature representations for
the nodes by simulating random walks around each node so that
the feature representation of each node can capture the various
connectivity patterns of each node.
Other methods. The diversity of graph visualization methods is
large. A more closely related method is AROPE [31], which relies
on higher order proximity between nodes. The key distinction
between AROPE and GLANCE is that AROPE computes higher
order distances in terms of path length (i.e. computing A2,A3, . . .),
and our method computes higher order relationships in terms of
cliques. We tried using AROPE to produce network embeddings,
but noticed that we need to fine tune parameters given the network
at hand to produce meaningful visualizations. Here, we focus on
comparing GLANCE to generic methods that require no changes
in parameters given the network at hand.

Caltech36, GLANCE Rice31, GLANCE

Caltech36, spectral embedding Rice31, spectral embedding

Figure 2: Graph visualization using GLANCE (top) and spec-
tral embedding (bottom) for two networks from the FB100
dataset. Each node’s color indicates its dorm label. The sep-
aration of nodes by colors is more apparent with GLANCE.

4 EXPERIMENTAL EVALUATION
4.1 Visual inspection of results
Here, we use the Facebook100 dataset from [27], which contains 100
graphs of the Facebook social network from 100 U.S. universities.

2929

https://github.com/nassarhuda/GLANCE

WWW ’20, April 20–24, 2020, Taipei, Taiwan H. Nassar et al.
C
al
te
ch
36

Ri
ce
31

C
or
ne
ll5

GLANCE DRL LGL N2V

Figure 3: A visual catalog of three
graphs from the Facebook100 dataset.
From these, we find that the LGL
algorithm provides the least visu-
ally interesting split of data. DRL,
which is a method that performs
a recursive force-directed visualiza-
tion algorithm on clustered data, en-
forces a clustering on the graph even
when clustering may not be apparent.
This is less problematic for smaller
datasets that have a clear split in clus-
ters (top two rows of column two),
but this becomes more problematic
when there is no apparent cluster
structure in the data (last two rows
of column two). Arguably, N2V and
GLANCE produce the best results.

Using higher order clique information improves the graph
layout. Our main claim in this paper is that using a spectral em-
bedding of a graph while accounting for higher order information
(clique structure) improves the overall graph layout. Here, we show
results of GLANCE, and GLANCE without clique sampling, which
is just spectral embedding with t-SNE. (This can be accomplished by
running GLANCE with K = 2). We show a visual illustration of our
results in Figure 2 which shows the graph visualization results of
GLANCE (top) and the visualization results of spectral embedding
without cliques (bottom) on two Facebook100 networks (Caltech36
and Rice31). The color labels in these plots indicate dorm label
colors, and the color separation is more apparent in the top row.
GLANCE provides useful visual outcomes when compared
with other visualization methods. We now compare GLANCE
to the three algorithms discussed in Section 3, on three FB100
datasets. We provide a catalog of the visualization results in Figure 3.
In our experiments, we note that the behavior of these methods
is similar among all the remaining datasets we tested. LGL often
provided a visualization that spread the nodes evenly over the
two dimensional space, but indicated little structure beyond this.
DRL’s visualization patters often revealed clusters of nodes that are
very condensed. Node2Vec often generated a well spread of nodes
with many small groups of nodes. And GLANCE often generated
clusters of nodes and placed nodes that didn’t seem to form clusters
in the middle of the graph layout with a balanced spread. Figure 3
illustrates these conclusions on three datasets.
GLANCE is better thanN2Vat placing the small degree nodes.
In the previous experiment, we saw that GLANCE and Node2Vec
produced comparable results, and here, we compare them based
on how well they place small degree nodes in the visualization. A

general goal of graph visualization is placing similar nodes in close
proximity to each other, and dissimilar nodes (nodes with large
shortest path distance) far away from each other. A generally chal-
lenging set of nodes to place in a graph visualization is the set of
low degree nodes because these nodes have very few connections,
and thus we have very little information about them. To evaluate
the performance of GLANCE and N2V on low degree nodes, we
locate a random set of 50 degree-1 nodes in the FB100 graphs and
show two results here.

In Figure 4, we show layouts with the degree-1 nodes highlighted
in red and observe that Node2Vec locates all the degree-1 nodes to-
gether when they are not necessarily similar. In contrast, GLANCE
places these nodes close to their connections in the graph (col-
umn 1 of Figure 4). Additional experiments show that this behavior
appears in the rest of the Facebook100 dataset
GLANCE can avoid the “hairball” effect. We now use a large
social network graph with 375K nodes from [28] and use our visu-
alization algorithms on it. LGL fails on this graph, and takes a few
days before it returns a nonnumerical result of all NaN coordinates.
For the remaining algorithms, we show the visualizations in Fig-
ure 5. In this figure, N2V reveals the visualization that is closest to
a “hairball" effect. DRL and GLANCE produced visualizations with
clusters, but with the clusters produced by GLANCE being more
coarse, and the clusters produced by DRL looking more condensed.
GLANCE identifies latent structure in Forest Fire Graphs.
One of the most realistic network models is the forest fire graph
generation model of Leskovec et al. [21]. The graph is initialized
with a small graph, in our case, a single edge. For each vertex that
arrives, the vertex chooses a hypothetical parent in the graph. This
vertex is chosen uniformly at random. From the parent vertex, a

2930

Using Cliques with Higher-order Spectral Embeddings Improves Graph Visualizations WWW ’20, April 20–24, 2020, Taipei, Taiwan

Caltech36, GLANCE Caltech36, N2V

Cornell5, GLANCE Cornell5, N2V

Figure 4: Node2Vec places all degree-1 nodes in close prox-
imity to each other when they are not necessarily similar.
In contrast, GLANCE places these nodes in close proximity
to their similar nodes in the graph.

“fire” is started, which propagates through the graph like a forest
fire: the vertices at the front of the fire select a geometrically dis-
tributed number of unburnt neighbors to burn based on a burning
probability and add them to the front of the fire (old vertices are
removed from the front). The process continues until there are no
more vertices that can be added in this way (the fire burns out).
The new vertex is connected to all vertices burned by the forest fire.
This process is repeated for every new vertex to be added. Because
the child nodes emulate much of the behavior of their parents,
we would expect their neighborhoods to be highly correlated and
hence, for the parent and child nodes to be placed close by in a
visualization of the graph.

These parent child edges can thus be seen as the “ground truth”
about which nodes should to be placed nearby. We run the visu-
alization algorithms on these graphs and track the placement of
parent-child (PC) edges vs. the non-parent-child (NPC) edges. Note
that for an n-node graph constructed as above, there are exactly
n − 2 parent-child edges. Consequently, we compute the distance of
each edge in the visualization and count how many of the smallest
n − 2 distances constitute parent-child edges. This yields a fraction
between 0 and 1 where larger scores represent better alignment
with the ground truth information. Note that this measure is ac-
tually the precision of using the n − 2 smallest distance values to
generate a result set.

We evaluate on a 10, 000 node graph generated with burning
probability 0.48. This choice was created to give a graph with ap-
proximately 60, 000 undirected edges. We repeat the experiment
100 times and produce a kernel density estimate over the fraction
of shortest edges that are parent-child edges, which is plotted in
Figure 6. GLANCE has the best performance in that plot and con-
sistently identifies around 55% of the total set of edges. Moreover,
among all the methods, GLANCE is always the best method in each
of the trials, in addition to having the best performance on average.

Note that just adding the clique weights to the Laplacian matrix
(i.e. GLANCE without using t-SNE), results in an increase in per-
formance in a large number of the trials. In contrast, adding t-SNE
alone to the unweighted Laplacian improved the results much more
consistently. But the combination of both in GLANCE gives the best
result. A smaller preliminary run that used N2V showed similar or
slightly better performance to GLANCE, although this took a long
time. The other methods are uncompetitive on this task.

GLANCE DRL N2V

Figure 5: Visualization of a large Facebook graph with 375K
nodes and more than a million edges from [28]. Among
these, N2V produces the visualization least indicative of
community structure. DRL produces a reliable visualization
with well separated clusters. Our visualization produces a
coarse type of visualization where communities can be seen
separated, yet, there is an indication of each community
size.

0.1 0.2 0.3 0.4 0.5
Fraction of parent-child edges in small edges

0

10

20

30

Ke
rn

el
 d

en
sit

y
es

tim
at

e

DRL

GLANCE

Laplacian+Clique Weights

Laplacian

Laplacian+TSNE

DRL
GLANCE
Laplacian+Clique Weights
Laplacian
Laplacian+TSNE

Figure 6: We synthetically generate a forest fire graph,
which includes a set of ground truth edges that should be
close. For each graph visualization method, we measure the
fraction of the smallest edges that are in that ground truth
set. This plot illustrates a kernel density estimate over these
fractions on 100 distinct trials. GLANCEwas computed with
no parameter tuning. This figure clearly shows the benefit
of using clique information, and the additional benefit of us-
ing t-SNE dimension reductions of Laplacian eigenvectors.

4.2 Numerical Evaluations
We now introduce a number of numerical metrics to evaluate the
visualization methods we used in this paper.Metric 1 (Closeness):
Adjacent nodes in the graph are close geometrically. For this
metric, we examine each nodeu separately, by first obtaining the set

2931

WWW ’20, April 20–24, 2020, Taipei, Taiwan H. Nassar et al.

Table 1: Numerical evaluation of some of the Facebook100 datasets from [28]

Network Closeness Random walks Spearman

GLANCE DRL LGL N2V GLANCE DRL LGL N2V GLANCE DRL LGL N2V

American75 0.14 0.18 0.06 0.25 0.26 0.26 0.01 0.08 0.12 0.3 0.57 0.27
Cornell5 0.12 0.16 0.02 0.23 0.76 0.2 0.0 0.05 0.04 0.19 0.51 0.17
MSU24 0.08 0.15 0.01 0.24 0.83 0.23 0.0 0.03 0.0 0.17 0.43 0.16
Northeastern19 0.11 0.14 0.02 0.27 0.43 0.28 0.0 0.65 0.1 0.29 0.52 0.17
Northwestern25 0.17 0.19 0.05 0.26 0.67 0.23 0.0 0.15 0.01 0.27 0.57 0.14

Table 2: Numerical evaluation of some large graphs of different types.

Network Closeness Random walks Spearman

GLANCE DRL LGL N2V GLANCE DRL LGL N2V GLANCE DRL LGL N2V

com-Amazon, [30] 0.32 0.32 - 0.35 0.66 0.47 - 0.20 0.24 0.40 - 0.28
dblp-2010, [7] [8] 0.409 0.44 - 0.46 0.50 0.40 - 0.25 0.07 0.24 - 0.19
dictionary28, [5] 0.45 0.38 0.04 0.54 0.82 0.64 0.03 0.47 0.25 0.51 0.62 0.38
soc-Epinions1, [25] 0.15 0.10 0.004 0.29 0.31 0.102 0.001 0.28 0.02 0.30 0.47 0.17
web-ND, [2] 0.09 0.15 - 0.12 0.13 0.08 - 0.04 0.22 0.29 - 0.15
FBonemonth, [28] 0.15 0.17 - 0.29 0.3 0.21 - 0.3 0.04 0.26 - 0.18

Γ(u), the set of nodes adjacent to u. We then find the set of closest
d = |Γ(u)| nodes to u geometrically by building a KDTree on the
visualized data points and selecting the d nearest neighbors. The
size of the intersection set of both sets normalized by d determines
the quality of visualization of a single node. We repeat the same
process for all nodes in the graph, and compute the mean value.

score(u) =
|Γ(u) ∩ NN (u, degree(u))|

degree(u)

closeness-metric =
1
n

∑
u ∈G

score(u)

where NN(u,d) returns the set of d nearest neighbors (geometri-
cally) to a node u.
Metric 2 (Random walks): Nodes explorable via a random
walk are close geometrically. In this metric as well, we examine
each node u separately. For each node u, we run 100 random walks
of size 20. Then, we find the nodes that appear in all 100 random
walks, and place them in a set S . We then find the closest |S | nodes
to u geometrically. The intersection of both sets normalized by the
size of S determines the score of u. Note that here, we can only
evaluate nodes that return a non-empty set S . Let S(u) = {v , u |v
appears in 100 random walks of size 20 started from node u}

score(u) =
|S(u) ∩ NN(u, |S|)|

|S|

randomwalk-metric =
1
k

∑
u ∈G, |S (u) |,0

score(u)

Metric 3 (Spearman): Graph distance is correlated to geomet-
ric distance. For this metric, we examine multiple pairs of nodes
at once. For a given graph, we use 10,000 randomly selected pairs of

nodes. For each visualization method, we compute the graph short-
est path distance as well as the Euclidean distance for every pair
of nodes selected. We then find the Spearman correlation between
both distributions.

Tables 1 and 2 show the results on some of the Facebook100
datasets and some other larger graphs respectively. In both tables,
GLANCE is consistently one of the best methods under the random
walks metric. LGL failed to produce coordinates for larger graphs,
but whenever applicable, LGL was able to produce the best Spear-
man metric, while N2V and DRL performed best on the closeness
metric. What this suggests is that other methods are perhaps more
useful when network proximity in terms of degree of separation
or relationship between graph distance and geometric distance is
more important, whereas GLANCE is better at detecting nodes that
would be deemed similar semantically by the random walks pro-
cedure (and not just nodes that are close to each other in terms of
graph distance), arguably a more meaningful way of representing
the graph when there is latent semantic structure.

4.3 Running time discussion
So far, we have explored all visualization methods from a visual
and numerical perspective, and here, we summarize our findings
on running time information. In Table 3 we show the running time
in seconds for the three methods GLANCE, DRL, and N2V on two
of the most challenging networks in terms of size (more than 100K
nodes). Generally, DRL was the fastest, and GLANCE’s bottleneck
was the usage of t-SNE, but it still finished running in a reasonable
amount of time compared to N2V. The LGL algorithm often failed
to run on the large graphs.

2932

Using Cliques with Higher-order Spectral Embeddings Improves Graph Visualizations WWW ’20, April 20–24, 2020, Taipei, Taiwan

Table 3: Running time results of some of some of the larger
datasets used.

Network name GLANCE DRL N2V

com-Amazon 11785.94 2466.78 104749.37
FBonemonth 12107.73 2043.69 149688.82

REFERENCES
[1] Alex Adai, Shailesh Date, Shannon Wieland, and Edward Marcotte. 2004. LGL:

Creating a Map of Protein Function With an Algorithm for Visualizing Very
Large Biological Networks. Journal of molecular biology 340 (07 2004), 179–90.
https://doi.org/10.1016/j.jmb.2004.04.047

[2] Réka Albert, Hawoong Jeong, and Albert-László Barabási. 1999. Internet: Diame-
ter of the world-wide web. nature 401, 6749 (1999), 130.

[3] David Auber, Daniel Archambault, Romain Bourqui, Maylis Delest, Jonathan
Dubois, Antoine Lambert, Patrick Mary, Morgan Mathiaut, Guy Melançon, Bruno
Pinaud, Benjamin Renoust, and Jason Vallet. 2017. TULIP 5. In Encyclopedia of
Social Network Analysis and Mining, Reda Alhajj and Jon Rokne (Eds.). Springer,
1–28. https://doi.org/10.1007/978-1-4614-7163-9_315-1

[4] Mathieu Bastian, Sebastien Heymann, and Mathieu Jacomy. 2009. Gephi: An
Open Source Software for Exploring and Manipulating Networks. (2009). http:
//www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154

[5] Vladimir Batagelj and Andrej Mrvar. [n.d.]. Pajek datasets. http://vlado.fmf.uni-
lj.si/pub/networks/data/

[6] Austin Benson, David F. Gleich, and Jure Leskovec. 2016. Higher-order orga-
nization of complex networks. Submitted. Science 353, 6295 (2016), 163–166.
https://doi.org/10.1126/science.aad9029

[7] Paolo Boldi, Marco Rosa, Massimo Santini, and Sebastiano Vigna. 2011. Layered
Label Propagation: A Multiresolution Coordinate-free Ordering for Compressing
Social Networks. In Proceedings of the 20th International Conference on World
Wide Web (Hyderabad, India) (WWW ’11). ACM, New York, NY, USA, 587–596.
https://doi.org/10.1145/1963405.1963488

[8] P. Boldi and S. Vigna. 2004. TheWebgraph Framework I: Compression Techniques.
In Proceedings of the 13th International Conference on World Wide Web (New York,
NY, USA) (WWW ’04). ACM, New York, NY, USA, 595–602. https://doi.org/10.
1145/988672.988752

[9] Fan R. L. Chung. 1992. Spectral Graph Theory. American Mathematical Society.
[10] Darren Edge, Jonathan Larson, Markus Mobius, and Christopher White. 2018.

Trimming the Hairball: Edge Cutting Strategies for Making Dense Graphs Usable.
In 2018 IEEE International Conference on Big Data (Big Data). IEEE, 3951–3958.

[11] Alessandro Epasto and Bryan Perozzi. 2019. Is a Single Embedding Enough?
Learning Node Representations that Capture Multiple Social Contexts. CoRR
abs/1905.02138 (2019). arXiv:1905.02138 http://arxiv.org/abs/1905.02138

[12] Miroslav Fiedler. 1989. Laplacian of graphs and algebraic connectivity. Banach
Center Publications 25, 1 (1989), 57–70. http://eudml.org/doc/267812

[13] Nils Gehlenborg, Seán I. O’Donoghue, Nitin S. Baliga, Alexander Goesmann,
Matthew A. Hibbs, Hiroaki Kitano, Oliver Kohlbacher, Heiko Neuweger, Reinhard
Schneider, Dan Tenenbaum, and Anne-Claude Gavin. 2010. Visualization of
omics data for systems biology. Nature Methods 7, 3 (2010), S56–S68. https:
//doi.org/10.1038/nmeth.1436

[14] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for
networks. In Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 855–864.

[15] Shweta Jain and C. Seshadhri. 2017. A Fast and Provable Method for Estimating
Clique Counts Using TuráN’s Theorem. In Proceedings of the 26th International
Conference onWorld WideWeb (Perth, Australia) (WWW ’17). International World

Wide Web Conferences Steering Committee, Republic and Canton of Geneva,
Switzerland, 441–449. https://doi.org/10.1145/3038912.3052636

[16] Stephen G Kobourov. 2012. Spring embedders and force directed graph drawing
algorithms. arXiv preprint arXiv:1201.3011 (2012).

[17] Martin Krzywinski, Inanc Birol, Steven JM Jones, and Marco A Marra.
2011. Hive plots—rational approach to visualizing networks. Briefings in
Bioinformatics 13, 5 (12 2011), 627–644. https://doi.org/10.1093/bib/bbr069
arXiv:http://oup.prod.sis.lan/bib/article-pdf/13/5/627/1147399/bbr069.pdf

[18] Martin Krzywinski, Inanc Birol, Steven JM Jones, and Marco A Marra.
2011. Hive plots—rational approach to visualizing networks. Briefings in
Bioinformatics 13, 5 (12 2011), 627–644. https://doi.org/10.1093/bib/bbr069
arXiv:http://oup.prod.sis.lan/bib/article-pdf/13/5/627/1147399/bbr069.pdf

[19] Jérôme Kunegis, Stephan Schmidt, Andreas Lommatzsch, Jürgen Lerner, Ernesto
William De Luca, and Sahin Albayrak. 2010. Spectral Analysis of Signed Graphs
for Clustering, Prediction and Visualization. In Proceedings of the SIAM Interna-
tional Conference on Data Mining, SDM 2010, April 29 - May 1, 2010, Columbus,
Ohio, USA. 559–570. https://doi.org/10.1137/1.9781611972801.49

[20] R. B. Lehoucq and D. C. Sorensen. 1996. Deflation Techniques for an Implicitly
Restarted Arnoldi Iteration. SIAM J. Matrix Anal. Appl. 17, 4 (1996), 789–821.
https://doi.org/10.1137/S0895479895281484

[21] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. 2005. Graphs over Time:
Densification Laws, Shrinking Diameters and Possible Explanations. In Proceed-
ings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery
in Data Mining (Chicago, Illinois, USA) (KDD ’05). ACM, New York, NY, USA,
177–187. https://doi.org/10.1145/1081870.1081893

[22] Laurens van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE.
Journal of machine learning research 9, Nov (2008), 2579–2605.

[23] Shawn Martin, W. Michael Brown, and Brian N. Wylie. 2007. Dr.L: Distributed
Recursive (Graph) Layout, Version 00. https://www.osti.gov//servlets/purl/
1231060

[24] Huda Nassar, Austin R. Benson, and David F. Gleich. 2019. Pairwise Link Predic-
tion. CoRR abs/1907.04503 (2019). arXiv:1907.04503 http://arxiv.org/abs/1907.
04503

[25] Matthew Richardson, Rakesh Agrawal, and Pedro Domingos. 2003. Trust Manage-
ment for the Semantic Web. In Proceedings of the Second International Conference
on Semantic Web Conference (Sanibel Island, FL) (LNCS-ISWC’03). Springer-Verlag,
Berlin, Heidelberg, 351–368. https://doi.org/10.1007/978-3-540-39718-2_23

[26] Matthew Suderman and Michael Hallett. 2007. Tools for visually exploring
biological networks. Bioinformatics 23, 20 (08 2007), 2651–2659. https://doi.org/10.
1093/bioinformatics/btm401 arXiv:http://oup.prod.sis.lan/bioinformatics/article-
pdf/23/20/2651/16858965/btm401.pdf

[27] Amanda L. Traud, Peter J. Mucha, and Mason A. Porter. 2011. Social Structure of
Facebook Networks. CoRR abs/1102.2166 (2011). arXiv:1102.2166

[28] Christo Wilson, Bryce Boe, Alessandra Sala, Krishna P.N. Puttaswamy, and Ben Y.
Zhao. 2009. User interactions in social networks and their implications. In
Proceedings of the 4th ACM European conference on Computer systems (Nuremberg,
Germany) (EuroSys ’09). ACM, New York, NY, USA, 205–218. https://doi.org/10.
1145/1519065.1519089

[29] Naganand Yadati, Madhav Nimishakavi, Prateek Yadav, Anand Louis, and
Partha Pratim Talukdar. 2018. HyperGCN: Hypergraph Convolutional Networks
for Semi-Supervised Classification. CoRR abs/1809.02589 (2018). arXiv:1809.02589
http://arxiv.org/abs/1809.02589

[30] Jaewon Yang and Jure Leskovec. 2012. Defining and Evaluating Network Com-
munities Based on Ground-truth. In Proceedings of the ACM SIGKDD Workshop
on Mining Data Semantics (Beijing, China) (MDS ’12). ACM, New York, NY, USA,
Article 3, 8 pages. https://doi.org/10.1145/2350190.2350193

[31] Ziwei Zhang, Peng Cui, Xiao Wang, Jian Pei, Xuanrong Yao, and Wenwu Zhu.
2018. Arbitrary-Order Proximity Preserved Network Embedding. In Proceedings
of the 24th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. ACM.

2933

https://doi.org/10.1016/j.jmb.2004.04.047
https://doi.org/10.1007/978-1-4614-7163-9_315-1
http://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154
http://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154
http://vlado.fmf.uni-lj.si/pub/networks/data/
http://vlado.fmf.uni-lj.si/pub/networks/data/
https://doi.org/10.1126/science.aad9029
https://doi.org/10.1145/1963405.1963488
https://doi.org/10.1145/988672.988752
https://doi.org/10.1145/988672.988752
https://arxiv.org/abs/1905.02138
http://arxiv.org/abs/1905.02138
http://eudml.org/doc/267812
https://doi.org/10.1038/nmeth.1436
https://doi.org/10.1038/nmeth.1436
https://doi.org/10.1145/3038912.3052636
https://doi.org/10.1093/bib/bbr069
https://arxiv.org/abs/http://oup.prod.sis.lan/bib/article-pdf/13/5/627/1147399/bbr069.pdf
https://doi.org/10.1093/bib/bbr069
https://arxiv.org/abs/http://oup.prod.sis.lan/bib/article-pdf/13/5/627/1147399/bbr069.pdf
https://doi.org/10.1137/1.9781611972801.49
https://doi.org/10.1137/S0895479895281484
https://doi.org/10.1145/1081870.1081893
https://www.osti.gov//servlets/purl/1231060
https://www.osti.gov//servlets/purl/1231060
https://arxiv.org/abs/1907.04503
http://arxiv.org/abs/1907.04503
http://arxiv.org/abs/1907.04503
https://doi.org/10.1007/978-3-540-39718-2_23
https://doi.org/10.1093/bioinformatics/btm401
https://doi.org/10.1093/bioinformatics/btm401
https://arxiv.org/abs/http://oup.prod.sis.lan/bioinformatics/article-pdf/23/20/2651/16858965/btm401.pdf
https://arxiv.org/abs/http://oup.prod.sis.lan/bioinformatics/article-pdf/23/20/2651/16858965/btm401.pdf
https://arxiv.org/abs/1102.2166
https://doi.org/10.1145/1519065.1519089
https://doi.org/10.1145/1519065.1519089
https://arxiv.org/abs/1809.02589
http://arxiv.org/abs/1809.02589
https://doi.org/10.1145/2350190.2350193

	Abstract
	1 Introduction
	2 Graph Layout Accounting for (N)known Cliques and Edges (GLANCE)
	3 Graph visualization methods
	4 Experimental evaluation
	4.1 Visual inspection of results
	4.2 Numerical Evaluations
	4.3 Running time discussion

	References

